研究者業績

富永 雅

トミナガ マサル  (Masaru Tominaga)

基本情報

所属
大阪教育大学 理数情報教育系 准教授
学位
博士(理学)(新潟大学)
修士(教育学)(大阪教育大学)

J-GLOBAL ID
201801016935531707
researchmap会員ID
B000340353

経歴

 1

論文

 53
  • 渡邉耕太, 富永雅, 赤木優斗
    数学教育学会誌 64(1・2) 21-31 2023年9月  査読有り
  • 富永雅, 松本明美, 藤井正俊
    大阪教育大学数学教育部門 数学教育研究 (52) 141-147 2023年8月  査読有り
  • 出耒光夫, 小山悠羽, 富永雅, 林梨奈, 堀江舞桜
    東京都市大学共通教育部紀要 16 41-60 2023年3月  
  • 富永雅, 西川恭一
    数学教育学会誌 63(3,4) 21-31 2023年3月  査読有り
  • 鈴木雄也, 富永雅
    大阪教育大学紀要 人文社会科学・自然科学 71 205-219 2023年2月  査読有り
  • M. Tominaga
    Mathematical Inequalities & Applications 25(3) 647-657 2022年7月  査読有り
  • M. Tominaga
    Linear and Multilinear Algebra 70(16) 3207-3219 2022年  査読有り
  • 富永雅, 西川恭一
    大阪教育大学紀要 人文社会科学 ・自然科学 69 89-100 2021年2月  査読有り
  • 富永雅, 西川恭一
    数学教育学会誌 58(3・4,) 53-64 2017年  査読有り
  • 富永雅
    日本・中国 数学教育国際会議 論文集 International Conference on Mathematics Education Between Japan and China Proceedings 41-44 2017年  査読有り
  • 富永雅
    岡山大学算数・数学教育学会誌 パピルス (24) 47-52 2017年  
    本年度、2017年3月に小学校学習指導要領が、続く6月にその解説が改訂された。中でも、新たな領域「Dデータの活用」での第6学年における学習事項では、現行同様、度数分布表・柱状グラフが扱われるとはいえ、統計的な問題解決活動や結論の妥当性についての批判的な考察が取り入れられ、新たな教科書には大きな改変が見込まれる。本稿では、現行の教科書に関する分析を更に行い、また次期学習指導要領・同解説を精査し、特徴や問題点を吟味する。このことは次期教科書に求められる対応につながる考察となる。
  • Masatoshi Fujii, Akemi Matsumoto, Masaru Tominaga
    Nihonkai Mathematical Journal 27(1) 17-27 2016年12月  査読有り
  • 富永雅, 國光妙子
    富山大学人間発達科学部発達教育学科科学教育研究室(数学教育研究室)編 富山数学教育学研究 (16) 1-13 2016年  
  • 富永雅, 角野兼太郎, 出耒光夫
    岡山大学算数・数学教育学会誌 パピルス (23) 69-72 2016年  
    小学校算数第5学年で学習する「図形の合同」において、各教科書を精査し、学習指導要領との整合性や教科書間における差異を抽出する。結果として、教科書記載内容・表現の問題点を挙げ、既存の学習内容を教科書の分析・比較の観点から考察し、実際に指導する上での留意点を明らかにする。
  • 富永雅
    大阪教育大学数学教室編 数学教育研究 (45) 1-10 2016年  査読有り
  • Masatoshi Fujii, Mohammad Sal Moslehian, Ritsuo. Nakamoto, Masaru Tominaga
    Scientiae Mathematicae Japonicae 78(3) 229-234 2015年12月  査読有り
  • 富永雅, 中村登
    岡山大学算数・数学教育学会誌 パピルス (22) 78-82 2015年  
  • Masatoshi Fujii, Akemi Matsumoto, Masaru Tominaga
    Nihonkai Mathematical Journal 25(1) 45-63 2014年6月  査読有り
  • Kichi-Suke Saito, Masaru Tominaga
    International Series of Numerical Mathematics 161 137-148 2012年  査読有り
  • Mohammad Sal Moslehian, Masaru Tominaga, Kichi-Suke Saito
    LINEAR ALGEBRA AND ITS APPLICATIONS 435(4) 823-829 2011年8月  査読有り
    Let C(p) be the Schatten p-class for p > 0. Generalizations of the parallelogram law for the Schatten 2-norms have been given in the following form: if A = {A(1),A(2),...,A(n)} and B = {B1, B2,..., B(n)} are two sets of operators in C(2), then (n)Sigma(i,j=1) parallel to A(i) - A(j) parallel to (2)(2) + (n)Sigma(i,j=1) parallel to B(i) - Bj parallel to(2). (n)Sigma(i,j=1) parallel to A(i) - B(j) parallel to (2)(2) - 2 parallel to(n)Sigma(i=1) (A(i) -B(i))parallel to(2)(2) . In this paper, we give generalizations of this as pairs of inequalities for Schatten p-norms, which hold for certain values of p and reduce to the equality above for p = 2. Moreover, we present some related inequalities for three sets of operators. (C) 2011 Elsevier Inc. All rights reserved.
  • Chi-Kwong Li, Yiu-Tung Poon, Masaru Tominaga
    LINEAR & MULTILINEAR ALGEBRA 59(10) 1077-1104 2011年  査読有り
    A bounded linear operator acting on a Hilbert space is a generalized quadratic operator if it has an operator matrix of the form [aI cI dT* bI] It reduces to a quadratic operator if d = 0. In this article, spectra, norms and various kinds of numerical ranges of generalized quadratic operators are determined. Some operator inequalities are also obtained. In particular, it is shown that for a given generalized quadratic operator, the rank-k numerical range, the essential numerical range and the q-numerical range are elliptical discs; the c-numerical range is a sum of elliptical discs. The Davis-Wielandt shell is the convex hull of a family of ellipsoids unless the underlying Hilbert space has dimension 2.
  • 富永雅, 長谷川貴之
    富山大学人間発達科学部発達教育学科科学教育研究室(数学教育研究室)編 富山数学教育学研究 (11) 1-4 2011年  
  • Saichi Izumino, N. Nakamura, Masaru Tominaga
    Scientiae Mathematicae Japonicae 72(2) 157-163 2010年9月  査読有り
  • Kichi-Suke Saito, Masaru Tominaga
    LINEAR ALGEBRA AND ITS APPLICATIONS 432(12) 3258-3264 2010年7月  査読有り
    Dunkl and Williams showed that for any nonzero elements x, y in a normed linear space X parallel to x/parallel to x parallel to - y/parallel to y parallel to parallel to <= 4 parallel to x - y parallel to/parallel to x parallel to + parallel to y parallel to, Pecaric and Rajic gave a refinement and, moreover, a generalization to operators A, B is an element of B(H) such that vertical bar A vertical bar, vertical bar B vertical bar are invertible as follows: vertical bar A vertical bar A vertical bar(-1) - B vertical bar B vertical bar(-1)vertical bar(2) <=vertical bar A vertical bar(-1) (p vertical bar A - B vertical bar(2) + q(vertical bar A vertical bar - vertical bar B vertical bar)(2)) vertical bar A vertical bar(-1), where p, q > 1 with 1/p + 1/q = 1. In this note, we shall investigate the inequality and also equality conditions under the assumption that the existence of vertical bar A vertical bar(-1) and vertical bar B vertical bar(-1) is not required. Moreover, we give a refinement of the equality conditions. (C) 2010 Elsevier Inc. All rights reserved.
  • 富永雅
    富山大学人間発達科学部発達教育学科科学教育研究室(数学教育研究室)編 富山数学教育学研究 (9) 27-30 2009年  
  • Yuki Seo, Masaru Tominaga
    LINEAR ALGEBRA AND ITS APPLICATIONS 429(7) 1546-1554 2008年10月  査読有り
    In this paper, we present a complement of a generalized Ando-Hiai inequality due to Fujii and Kamei [M. Fujii, E. Kamei, Ando-Hiai inequality and Furuta inequality, Linear Algebra Appl. 416 (2006) 541-545]. Let A and B be positive operators on a Hilbert space H such that 0 < m(1) <= A <= M-1 and 0 < m(2) <= B <= M-2 for some scalars m(i) <= M-i (i = 1,2), and alpha epsilon [0, 1]. Put h(i) = M-i/m(i) for i =1, 2. Then for each 0 < r <= 1 and s >= 1 [GRAPHICS] where A#(alpha) B := A(1/2)(A(-1/2) BA(-1/2))(alpha) A(1/2) is the alpha-geometric mean and a generalized Kantorovich constant K (h, p) is defined for It > 0 as K (h,p) := h(p)-h/(p-1)(h-1) (p-1/p h(p)-1/h(p)-h)(p) for all real numbers p epsilon R. (C) 2008 Elsevier Inc. All rights reserved.
  • Masaru Tominaga
    MATHEMATICAL INEQUALITIES & APPLICATIONS 11(2) 221-227 2008年4月  査読有り
    The Cordes inequality was extended by using concave or convex functions. In this note, we give reverse inequalities of its extended ones for an increasing strictly concave submultiplicative function. As an application, we obtain a generalization of Bourin's inequality which gives an estimation of operator norm by spectral radius.
  • Masatoshi Fujii, Ritsuo Nakamoto, Masaru Tominaga
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS 2(2) 23-30 2008年  査読有り
    We shall give a norm inequality equivalent to the grand Furuta inequality, and moreover show its reverse as follows: Let A and B be positive operators such that 0 < m <= B <= M for some scalars 0 < m < M and h :(-) M/m > 1. Then parallel to A(1/2) {A(-t/2) (A(r/2) B((r-t){(p-t) s+r}/1-t+r) A(r/2))(1/s) A(-t/2)}(1/p) A(1/2)parallel to <= K(h(r-t), (p-t)s+r/1-t+r)(1/ps) parallel to A(1-t+r/2) Br-t A(1-t+r/2) parallel to((p-t)s+r/ps(1-t+r)) for 0 <= t <= 1, p >= 1, s >= 1 and r >= t >= 0, where K(h,p) is the generalized Kantorovich constant. As applications, we consider reverses related to the Ando-Hiai inequality.
  • 富永雅, 馬場良始, 藤井淳一, 藤井正俊
    大阪教育大学数学教室編 数学教育研究 (38) 79-86 2008年  査読有り
  • Masatoshi Fujii, Ritsuo Nakamoto, Masaru Tominaga
    LINEAR ALGEBRA AND ITS APPLICATIONS 426(1) 33-39 2007年10月  査読有り
    We improve Bebiano-Lemos-Providencia inequality: For A, B >= 0 parallel to A(1+t/2) B-t A(1+t/2)parallel to <= parallel to A(1/2) (A(s/2) B-s A(s/2))(t/s) A(1/2)parallel to for all s >= t >= 0. In our discussion, Furuta inequality plays an essential role. Actually we have parallel to A(1s+/2) B1+s A(1+s/2)parallel to(p+s/p(1+s)) <= parallel to A(1/2) (A(s/2) Bp+s A(s/2))(1/p) A(1/2)parallel to for p >= 1 and s >= 0. (C) 2007 Elsevier Inc. All rights reserved.
  • Bozidar Ivankovi\'c, Josip Pecari\'c, Masaru Tominaga
    Toyama Mathematical Journal (30) 35-43 2007年  査読有り
  • Bozidar Ivankovi\'c, Saichi Izumino, Josip Pecari\'c, Masaru Tominaga
    JIPAM. J. Inequal. Pure Appl. Math. 8(3) Article 88, 10 pp. 2007年  査読有り
  • 富永雅
    大阪教育大学数学教室編 数学教育研究 (37) 37-57 2007年  査読有り
  • Masaru Tominaga
    Nihonkai Mathematical Journal 17(1) 9-26 2006年6月  査読有り
  • Jun-Ichi Fujii, Yuki Seo, Masaru Tominaga
    Mathematical Inequalities and Applications 8(3) 529-535 2005年7月  査読有り
  • S Izumino, J Pecaric, M Tominaga
    MATHEMATICAL INEQUALITIES & APPLICATIONS 8(2) 337-345 2005年4月  査読有り
    We give the maximum of the difference D-p(a, b; w) := ((k=1)Sigma(n) w(k)a(k)(p))(1/p) ((k=1)Sigma(n) w(k)b(k)(p)) - (k=1)Sigma(n) w(k)a(k)b(k) derived from a weighted Holder's inequality for p, q > 1, p(-1) + q(-1) = 1 and for positive n-tuples a:= (a(1),..., a(n)), b:= (b(1),..., b(n)) and a weight w := (w(1),..., w(n)) under certain conditions. The discussion in this note is simpler than our previous ones. It comes from the arrangement of a given weight and a linearization of D-p(a, b; w) via Young's inequality. As a consequence, we give a, b and w which attain the maximum.
  • Akemi Matsumoto, Masaru Tominaga
    Scientiae Mathematicae Japonicae 61(2) 243-247 2005年3月  査読有り
  • Jun-Ichi Fujii, Masatoshi Fujii, Yuki Seo, Masaru Tominaga
    Banach and Function Spaces, Yokohama Publ., Yokohama 205-213 2004年  査読有り
  • M Tominaga
    MATHEMATICAL INEQUALITIES & APPLICATIONS 7(1) 113-125 2004年1月  査読有り
    For a positive operator A with 0 < m less than or equal to A less than or equal to M (m, M is an element of R), the Young operator inequality gives as follows: lambdaA + (1 - lambda) greater than or equal to A(lambda) for lambda is an element of [0, 1]. In this note, we prove that the estimation of the converse Young operator inequality is obtained by using Specht's ratio S(t) = t 1/t-1/e log t 1/t-1 and the logarithmic mean L(s, t) = t-s/log t - log s (s, t > 0), that is, we have for a given p under some conditions pA(lambda) + max {L(1, m) log S(m)/p, L(1, M) log S(M)/p} greater than or equal to lambdaA + (1 - lambda) (greater than or equal to A(lambda)) for lambda is an element of [0, 1]. Moreover by using operator means, we consider the converse Young operator inequality related to two operators A and B. Furthermore we discuss reverse inequalities of the Holder-McCarthy inequality and the inequality on the concavity of the logarithmic function.
  • JI Fujii, Y Seo, M Tominaga
    LINEAR ALGEBRA AND ITS APPLICATIONS 377(377) 69-81 2004年1月  査読有り
    As a converse of the arithmetic and geometric mean inequality, Specht gave the ratio of the arithmetic one by the geometric one in 1960. We can reap the rich harvest of the Specht ratio in operator theory. In this paper, we shall present other characterizations of the chaotic order and the usual one associated with Kantorovich type inequalities via the Specht ratio. Among others, as an application of the grand Fururta inequality, we show that if A and B are positive operators and k greater than or equal to A greater than or equal to 1/k for some k greater than or equal to 1, then A greater than or equal to B is equivalent to S-k(2(p - 1)s)(2/s) A(p) greater than or equal to B-P holds for all p greater than or equal to 1, s greater than or equal to 1 such that p - 1 greater than or equal to 1/s, where the Specht ratio S-k(r) is defined for each r > 0 as S-k(r) = (k(r) - 1)k(r/kr-1)/ r e log k (k > 0, k not equal 1) and S-1(r) = 1. (C) 2003 Elsevier Inc. All rights reserved.
  • 富永雅, 他
    大阪教育大学数学教室編 数学教育研究 (33) 39-67 2003年  査読有り
  • M Tominaga
    JOURNAL OF INEQUALITIES AND APPLICATIONS 7(5) 633-645 2002年10月  査読有り
    In our previous paper, we obtained a reverse Holder's type inequality which gives an upper bound of the difference: (Sigma a(k)(p))(1/p)(Sigma b(k)(q))(1/q) - lambdaSigma a(k)b(k) with a parameter lambda > 0, for n-tuples a = (a(1),..,a(n)) and b = (b(1),....b(n)) of positive numbers and for p > 1, q > 1 satisfying 1/p + 1/q = 1. In this paper for commutative positive operators A and B on a Hilbert space H and a unit vector x is an element of H, we give an upper bound of the difference <A(p)x, x>(1/p)<B(q)x, x>(1/q) - lambda<ABx, x>. As applications, considering special cases, we induce some difference and ratio operator inequalities. Finally, using the geometric mean in the Kubo-Ando theory we shall give a reverse Holder's type operator inequality for noncommutative operators.
  • Masatoshi Fujii, Young Ok Kim, Masaru Tominaga
    Far East Journal of Mathematical Sciences 6(3) 225-238 2002年9月  査読有り
  • M Fujii, Y Seo, M Tominaga
    MATHEMATICAL INEQUALITIES & APPLICATIONS 5(3) 573-582 2002年7月  査読有り
    We prove a Golden-Thompson type inequality via Specht's ratio: Let H and K be selfadjoint operators on a Hilbert space H satisfying M1 greater than or equal to H, K greater than or equal to mI for some scalar M > m. Then M-h(1) (1 - lambda)e(tH) + lambdae(tK))(1/l) greater than or equal toe((1-lambda)H+lambdaK) greater than or equal to M-h(1)M--1(h)(t)(-1/l) ((1 - lambda)e(tH) + lambdae(tK))(1/l) holds for all t > 0 and 0 less than or equal to lambda less than or equal to 1, where h = e(M-m) and (generalized) Specht's ratio M-h(t) is defined for h > 0 as [GRAPHICS] (h not equal 1) and M1(1) = 1.
  • Masaru Tominaga
    Scientiae Mathematicae Japonicae 55(3) 583-588 2002年5月  査読有り
  • 瀬尾祐貴, 富永雅, 藤井淳一, 藤井正俊, 松本明美
    大阪教育大学数学教室編 数学教育研究 (32) 43-52 2002年  査読有り
  • Masatoshi Fujii, Young Ok Kim, Masaru Tominaga
    Nihonkai Mathematical Journal 12(1) 59-70 2001年6月  査読有り
  • S Izumino, M Tominaga
    MATHEMATICAL INEQUALITIES & APPLICATIONS 4(2) 163-187 2001年4月  査読有り
    Using a technique due to Ozeki, we give an upper bound of (Sigmaa(k)(p))(1/p) (Sigmab(k)(q))(1/q) - lambda Sigmaa(k)b(k) for lambda > 0, for p > 1, q > 1 satisfying 1/p + 1/q = 1, and for n - tuples a = (a(1),...,a(n),) and b = (b(1),..., b(n)) of positive numbers under certain conditions. This yields a complement of Holder's inequality. The estimation with a parameter lambda enables us to unify the discussions on difference and ratio inequalities derived from Holders inequality.
  • 瀬尾祐貴, 富永雅, 藤井淳一, 藤井正俊, 松本明美
    大阪教育大学数学教室編 数学教育研究 (31) 63-70 2001年  査読有り

MISC

 30

書籍等出版物

 2
  • 黒田, 恭史, 富永, 雅, 岡本, 尚子, 近藤, 竜生, 吉村, 昇, 葛城, 元, 津田, 真秀 (担当:分担執筆, 範囲:第2章 数学教育史)
    共立出版 2023年8月 (ISBN: 9784320114968)
  • 黒田, 恭史, 富永, 雅, 岡本, 尚子, 御園, 真史, 北島, 茂樹, 星野, 孝雄, 葛城, 元, 守屋, 誠司, 吉村, 昇, 河崎, 哲嗣, 成川, 康男, 松嵜, 昭雄 (担当:分担執筆, 範囲:第2章 数学教育史)
    共立出版 2022年3月 (ISBN: 9784320114661)

講演・口頭発表等

 77

学術貢献活動

 6

社会貢献活動

 19