Osaka Kyoiku University Researcher Information
日本語 | English
研究者業績
基本情報
- 所属
- 大阪教育大学 理数情報教育系 教授
- 学位
- 理学修士(京都大学)
- 研究者番号
- 50239688
- J-GLOBAL ID
- 200901027932092682
- researchmap会員ID
- 1000357417
- 外部リンク
研究キーワード
3経歴
3-
2016年4月
-
2010年4月 - 2016年3月
-
1991年8月 - 2007年3月
委員歴
1-
2005年
論文
42-
Japan Journal of Industrial and Applied Mathematics 2023年4月26日 査読有り
-
Proceedings of The 40th JSST Annual International Conference on Simulation Technology 114-117 2021年9月 査読有り
-
Proceedings of the Tenth International Conference on Information 11-15 2021年3月 査読有り
-
RIMS Kokyuroku 2147 14-35 2020年1月 招待有り
-
2019 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR) 128-133 2019年7月 査読有り
-
Trends in Mathematics 543-550 2019年 査読有り
-
Analysis, Probability, Applications, and Computation 551-558 2019年 査読有り
-
2018 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR) 113-118 2018年7月 査読有り
-
2018 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR) 82-88 2018年7月 査読有り
-
Trends in Mathematics 595-601 2017年 査読有り
-
Pseudo-Differential Operators: Groups, Geometry and Application 219-239 2017年 査読有り
-
New Trends in Analysis and Interdisciplinary Applications 581-587 2017年 査読有り
-
日本応用数理学会論文誌 27(2) 216-238 2017年 査読有りhttps://doi.org/10.11540/jsiamt.27.2_216
-
2016 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR) 189-194 2016年7月 査読有り
-
Proceedings of the Seventh International Conference on Information 57-60 2015年11月 査読有り
-
2015 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR) 87-92 2015年7月 査読有り
-
2015 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR) 93-98 2015年7月 査読有り
-
2015 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR) 111-116 2015年7月 査読有り
-
Journal of the Mathematical Society of Japan 67(3) 1275-1294 2015年7月1日 査読有り
-
2015 12th International Conference on Information Technology - New Generations 347-352 2015年4月 査読有り
-
Current Trends in Analysis and Its Applications 467-473 2015年 査読有り
-
2014 International Conference on Wavelet Analysis and Pattern Recognition 134-139 2014年7月 査読有り
-
2014 International Conference on Wavelet Analysis and Pattern Recognition 127-133 2014年7月 査読有り
-
INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING 12(4) 2014年7月 査読有りThe purpose of blind source separation is to separate the original sources from the sensor array, without knowing the transmission channel characteristics. Besides methods based on independent component analysis, several methods based on time-frequency analysis have been proposed. In this paper, a new method of multistage separation is proposed, which improves our formerly proposed methods using the time-scale information matrix based on the continuous multiwavelet transform.
-
2013 International Conference on Wavelet Analysis and Pattern Recognition 73-78 2013年7月 査読有り
-
2013 International Conference on Wavelet Analysis and Pattern Recognition 79-84 2013年7月 査読有り
-
Proceedings of the Sixth International Conference on Information 30-33 2013年5月 査読有り
-
International Journal of Wavelets, Multiresolution and Information Processing 08(04) 575-594 2010年7月 査読有りThe cocktail party problem deals with the specialized human listening ability to focus one's listening attention on a single talker among a cacophony of conversations and background noises. The blind source separation problem is how to enable computers to solve the cocktail party problem in a satisfactory manner. The simplest version of spatio-temporal mixture problem, which is a type of blind source separation problem, has been solved by a generalized version of the quotient signal estimation method based on the analytic wavelet transform, under the assumption that the time delays are integer multiples of the sampling period. The analytic wavelet transform is used to represent time-frequency information of observed signals. Without the above assumption, improved algorithms, utilizing phase information of the analytic wavelet transforms of the observed signals, are proposed. A series of numerical simulations is presented.
-
Applicable Analysis 88(3) 425-456 2009年3月 査読有り
-
日本応用数理学会論文誌 19(3) 257-278 2009年 査読有り時間周波数情報を用いた1次元信号のブラインド信号源分離問題の解法を,2次元データである画像分離問題に対して拡張する.離散定常ウェーブレット変換を用いて空間スケール情報を定義し,画像分離問題を解くアルゴリズムを提案する.複数の数値実験によりその有効性を示し,独立成分分析を用いた画像分離の従来法との比較を行う.
MISC
62-
International Conference on Wavelet Analysis and Pattern Recognition 397-402 2012年A new design based on wavelet analysis for the objective audiometry devices is proposed. The auditory brainstem response and 80-Hz auditory steady-state response (ASSR) are used in the objective audiometry devices for infants. For the aged, an objective audiometry device is used in anti-aging investigations, which enables the hearing acuity of awake adults to be tested with the 40-Hz ASSR. The ASSR evoked by an amplitude modulated tone is recorded as a waveform. However, the evoked potential response is very small. Therefore, it is difficult to decide a threshold of the response and whether a significant response exists when it is mixed with noise such as the background brain waves. To cope with this problem, we need to average the evoked response waveforms. In particular, the 40-Hz ASSR has a large amount of noise caused by the background brain waves in comparison with the 80-Hz ASSR. In this paper, we apply waveform analysis using the wavelet transform in order to extract the 40-Hz ASSR from a signal mixed with a large amount of noise. Subjects with normal hearing participated in this study. © 2012 IEEE.
-
International Conference on Wavelet Analysis and Pattern Recognition 384-389 2012年The blind image source separation problem is to estimate the number of the unknown source images and to separate the original images from superpositions of source images. The coefficients of the superposition are also unknown. Our proposed source reduction method has a potential to overcome the difficulty of previously proposed methods. In this paper, we give an algorithm of the method with continuous multiwavelet transform for the image separation. Various numerical experiments using the proposed algorithm ensure that our proposed source reduction method performs well for image separation. An example of numerical experiments is presented. © 2012 IEEE.
-
International Conference on Wavelet Analysis and Pattern Recognition 346-351 2012年The blind source separation problem is to estimate the number of the unknown source signals and to separate the original source signals from the several observed signals, which are assumed to be linear superpositions of the sources. The coefficients of the superposition are also unknown. In this paper, in order to overcome a difficulty in previously proposed methods, a new approach to solve the problem, named source reduction method, using continuous wavelet transform is proposed. © 2012 IEEE.
-
APPLICABLE ANALYSIS 91(4) 617-644 2012年The purpose of blind source separation is to separate and to estimate the original sources from the sensor array, without knowing the transmission channel characteristics. Besides methods based on independent component analysis which is one of the most powerful tools for blind source separation, several methods based on time-frequency analysis have been proposed. One of them is the quotient signal estimation method which can estimate the unknown number of sources. The notion of the continuous multiwavelet transform is introduced and three types of multiwavelets are presented. A new method using continuous multiwavelet transform, position-scale information matrices and self-organizing maps, is presented and applied to image source separations with noise. The performance of three multiwavelets are compared.
-
平成 23 年度 数学・数理科学と諸科学・産業との連携研究ワークショップ ウェーブレット理論と工学への応用 プロシーディングス 1 87-105 2011年9月主催:文部科学省, 大阪教育大学 場所:大阪教育大学 天王寺キャンパス 日程:平成 23 年 9 月 12 日(月)13:00 - 18:00 平成 23 年 9 月 13 日(火) 9:00 - 12:30
書籍等出版物
4講演・口頭発表等
48-
14th International ISAAC Congress 2023年7月17日
-
The 40th JSST Annual International Conference on Simulation Technology 2021年9月1日 日本シミュレーション学会
-
13th ISAAC Congress 2021年8月6日 ISAAC
所属学協会
3共同研究・競争的資金等の研究課題
27-
科研費補助金 2021年4月 - 2024年3月
-
日本学術振興会 科学研究費助成事業 2020年4月 - 2023年3月
-
日本学術振興会 科学研究費助成事業 2017年4月 - 2020年3月
-
日本学術振興会 科研費補助金 2017年4月 - 2020年3月
-
日本学術振興会 科研費補助金 2014年4月 - 2017年3月