Osaka Kyoiku University Researcher Information
日本語 | English
研究者業績
基本情報
- 所属
- 大阪教育大学 理数情報教育系 准教授
- 学位
- 博士(理学)(2000年 京都大学)
- 連絡先
- katsuracc.osaka-kyoiku.ac.jp
- 研究者番号
- 90362748
- ORCID ID
- https://orcid.org/0000-0002-5277-568X
- J-GLOBAL ID
- 200901049121591542
- researchmap会員ID
- 6000005612
- 外部リンク
研究分野
2論文
183-
Astrophysical Journal 975(1) 132 2024年11月 査読有りAbstract We present a detailed investigation of photometric, spectroscopic, and polarimetric observations of the Type II SN 2023ixf. Earlier studies have provided compelling evidence for a delayed shock breakout from a confined dense circumstellar matter (CSM) enveloping the progenitor star. The temporal evolution of polarization in the SN 2023ixf phase revealed three distinct peaks in polarization evolution at 1.4 days, 6.4 days, and 79.2 days, indicating an asymmetric dense CSM, an aspherical shock front and clumpiness in the low-density extended CSM, and an aspherical inner ejecta/He-core. SN 2023ixf displayed two dominant axes, one along the CSM-outer ejecta and the other along the inner ejecta/He-core, showcasing the independent origin of asymmetry in the early and late evolution. The argument for an aspherical shock front is further strengthened by the presence of a high-velocity broad absorption feature in the blue wing of the Balmer features in addition to the P-Cygni absorption post-16 days. Hydrodynamical light-curve modeling indicated a progenitor mass of 10 M ⊙ with a radius of 470 R ⊙ and explosion energy of 2 × 1051 erg, along with 0.06 M ⊙ of 56 Ni, though these properties are not unique due to modeling degeneracies. The modeling also indicated a two-zone CSM: a confined dense CSM extending up to 5 × 1014 cm with a mass-loss rate of 10−2 M ⊙ yr−1 and an extended CSM spanning from 5 × 1014 to at least 1016 cm with a mass-loss rate of 10−4 M ⊙ yr−1, both assuming a wind-velocity of 10 km s−1. The early-nebular phase observations display an axisymmetric line profile of [O i], redward attenuation of the emission of Hα post 125 days, and flattening in the Ks-band, marking the onset of dust formation.
-
Astrophysical Journal Letters 968(2) L17 2024年6月 査読有りAbstract We report the study of a huge optical intraday flare on 2021 November 12 at 2 a.m. UT in the blazar OJ 287. In the binary black hole model, it is associated with an impact of the secondary black hole on the accretion disk of the primary. Our multifrequency observing campaign was set up to search for such a signature of the impact based on a prediction made 8 yr earlier. The first I-band results of the flare have already been reported by Kishore et al. (2024). Here we combine these data with our monitoring in the R-band. There is a big change in the R–I spectral index by 1.0 ± 0.1 between the normal background and the flare, suggesting a new component of radiation. The polarization variation during the rise of the flare suggests the same. The limits on the source size place it most reasonably in the jet of the secondary BH. We then ask why we have not seen this phenomenon before. We show that OJ 287 was never before observed with sufficient sensitivity on the night when the flare should have happened according to the binary model. We also study the probability that this flare is just an oversized example of intraday variability using the Krakow data set of intense monitoring between 2015 and 2023. We find that the occurrence of a flare of this size and rapidity is unlikely. In machine-readable Tables 1 and 2, we give the full orbit-linked historical light curve of OJ 287 as well as the dense monitoring sample of Krakow.
-
Astrophysical Journal 965(1) 49 2024年4月 査読有りAbstract The classical nova V339 Del 2013 is characterized by a 1.5 mag dip of the V light curve owing to a dust shell formation, with which soft X-ray emissions coexist. We present a Strömgren y-band light curve, which represents continuum emission, not influenced by strong [O iii] emission lines. The y light curve monotonically decreases in marked contrast to the V light curve that shows a 1.5 mag dip. We propose a multiwavelength light-curve model that reproduces the y and V light curves as well as the gamma-ray and X-ray light curves. In our model, a strong shock arises far outside the photosphere after optical maximum, because later ejected matter collides with earlier ejected gas. Our shocked shell model explains optical emission lines, Hα, hard X-ray, and gamma-ray fluxes. A dust shell forms behind the shock that suppresses [O iii]. This low flux of [O iii] shapes a 1.5 mag drop in the V light curve. Then, the V flux recovers with an increasing contribution from [O iii] lines, while the y flux does not. However, the optical depth of the dust shell is too small to absorb the photospheric (X-ray) emission of the white dwarf. This is the reason that a dust shell and soft X-ray radiation coexist. We determined the white dwarf mass to be MWD = 1.25 ± 0.05 M☉ and the distance modulus in the V band to be (m − M)V = 12.2 ± 0.2; the distance is d = 2.1 ± 0.2 kpc for the reddening of E(B − V) = 0.18.
-
Monthly Notices of the Royal Astronomical Society 526(3) 4502-4513 2023年12月 査読有りABSTRACT In 2022 the BL Lac object S4 0954+65 underwent a major variability phase, reaching its historical maximum brightness in the optical and γ-ray bands. We present optical photometric and polarimetric data acquired by the Whole Earth Blazar Telescope (WEBT) Collaboration from 2022 April 6 to July 6. Many episodes of unprecedented fast variability were detected, implying an upper limit to the size of the emitting region as low as $10^{-4}$ parsec. The WEBT data show rapid variability in both the degree and angle of polarization. We analyse different models to explain the polarization behaviour in the framework of a twisting jet model, which assumes that the long-term trend of the flux is produced by variations in the emitting region viewing angle. All the models can reproduce the average trend of the polarization degree, and can account for its general anticorrelation with the flux, but the dispersion of the data requires the presence of intrinsic mechanisms, such as turbulence, shocks, or magnetic reconnection. The WEBT optical data are compared to γ-ray data from the Fermi satellite. These are analysed with both fixed and adaptive binning procedures. We show that the strong correlation between optical and γ-ray data without measurable delay assumes different slopes in faint and high brightness states, and this is compatible with a scenario where in faint states we mainly see the imprint of the geometrical effects, while in bright states the synchrotron self-Compton process dominates.
-
Monthly Notices of the Royal Astronomical Society 525(1) 1153-1157 2023年10月 査読有りABSTRACT The highly variable blazar OJ 287 is commonly discussed as an example of a binary black hole system. The 130 yr long optical light curve is well explained by a model where the central body is a massive black hole of 18.35 $\times$ 109 solar mass that supports a thin accretion disc. The secondary black hole of 0.15 $\times$ 109 solar mass impacts the disc twice during its 12 yr orbit, and causes observable flares. Recently, it has been argued that an accretion disc with a typical Active Galactic Nuclei (AGN) accretion rate and above mentioned central body mass should be at least six magnitudes brighter than OJ 287’s host galaxy and would therefore be observationally excluded. Based on the observations of OJ 287’s radio jet, detailed in Marscher and Jorstad (2011), and up-to-date accretion disc models of Azadi et al. (2022), we show that the V-band magnitude of the accretion disc is unlikely to exceed the host galaxy brightness by more than one magnitude, and could well be fainter than the host. This is because accretion power is necessary to launch the jet as well as to create electromagnetic radiation, distributed across many wavelengths, and not concentrated especially on the optical V-band. Further, we note that the claimed V-band concentration of accretion power leads to serious problems while interpreting observations of other AGN. Therefore, we infer that the mass of the primary black hole and its accretion rate do not need to be smaller than what is determined in the standard model for OJ 287.
-
Galaxies 11(4) 82 2023年7月 査読有りWe present a summary of the results of the OJ 287 observational campaign, which was carried out during the 2021/2022 observational season. This season is special in the binary model because the major axis of the precessing binary happens to lie almost exactly in the plane of the accretion disc of the primary. This leads to pairs of almost identical impacts between the secondary black hole and the accretion disk in 2005 and 2022. In 2005, a special flare called “blue flash” was observed 35 days after the disk impact, which should have also been verifiable in 2022. We did observe a similar flash and were able to obtain more details of its properties. We describe this in the framework of expanding cloud models. In addition, we were able to identify the flare arising exactly at the time of the disc crossing from its photo-polarimetric and gamma-ray properties. This is an important identification, as it directly confirms the orbit model. Moreover, we saw a huge flare that lasted only one day. We may understand this as the lighting up of the jet of the secondary black hole when its Roche lobe is suddenly flooded by the gas from the primary disk. Therefore, this may be the first time we directly observed the secondary black hole in the OJ 287 binary system.
-
Publications of the Astronomical Society of Japan 75(3) 619-633 2023年6月 査読有りAbstract Superoutbursts in WZ Sge-type dwarf novae (DNe) are characterized by both early superhumps and ordinary superhumps originating from the 2 : 1 and 3 : 1 resonances, respectively. However, some WZ Sge-type DNe show a superoutburst lacking early superhumps; it is not well established how these differ from superoutbursts with an early superhump phase. We report time-resolved photometric observations of the WZ Sge-type DN V627 Peg during its 2021 superoutburst. The detection of ordinary superhumps before the superoutburst peak highlights that this 2021 superoutburst of V627 Peg, like that in 2014, did not feature an early superhump phase. The duration of stage B superhumps was slightly longer in the 2010 superoutburst accompanied by early superhumps than that in the 2014 and 2021 superoutbursts, which lacked early superhumps. This result suggests that an accretion disk experiencing the 2 : 1 resonance may have a larger mass at the inner part of the disk and hence needs more time for the inner disk to become eccentric. The presence of a precursor outburst in the 2021 superoutburst suggests that the maximum disk radius should be smaller than that of the 2014 superoutburst, even though the duration of quiescence was longer than that before the 2021 superoutburst. This could be accomplished if the 2021 superoutburst was triggered as an inside-out outburst or if the mass transfer rate in quiescence changes by a factor of two, suggesting that the outburst mechanism and quiescence state of WZ Sge-type DNe may have more variety than ever thought.
-
Monthly Notices of the Royal Astronomical Society 522(1) 102-116 2023年6月 査読有りABSTRACT In 2021 BL Lacertae underwent an extraordinary activity phase, which was intensively followed by the Whole Earth Blazar Telescope (WEBT) Collaboration. We present the WEBT optical data in the BVRI bands acquired at 36 observatories around the world. In mid-2021 the source showed its historical maximum, with R = 11.14. The light curves display many episodes of intraday variability, whose amplitude increases with source brightness, in agreement with a geometrical interpretation of the long-term flux behaviour. This is also supported by the long-term spectral variability, with an almost achromatic trend with brightness. In contrast, short-term variations are found to be strongly chromatic and are ascribed to energetic processes in the jet. We also analyse the optical polarimetric behaviour, finding evidence of a strong correlation between the intrinsic fast variations in flux density and those in polarization degree, with a time delay of about 13 h. This suggests a common physical origin. The overall behaviour of the source can be interpreted as the result of two mechanisms: variability on time-scales greater than several days is likely produced by orientation effects, while either shock waves propagating in the jet, or magnetic reconnection, possibly induced by kink instabilities in the jet, can explain variability on shorter time-scales. The latter scenario could also account for the appearance of quasi-periodic oscillations, with periods from a few days to a few hours, during outbursts, when the jet is more closely aligned with our line of sight and the time-scales are shortened by relativistic effects.
-
Monthly Notices of the Royal Astronomical Society 521(4) 6143-6155 2023年6月 査読有りABSTRACT The bright blazar OJ 287 routinely parades high brightness bremsstrahlung flares, which are explained as being a result of a secondary supermassive black hole (SMBH) impacting the accretion disc of a more massive primary SMBH in a binary system. The accretion disc is not rigid but rather bends in a calculable way due to the tidal influence of the secondary. Next, we refer to this phenomenon as a variable disc level. We begin by showing that these flares occur at times predicted by a simple analytical formula, based on general relativity inspired modified Kepler equation, which explains impact flares since 1888. The 2022 impact flare, namely flare number 26, is rather peculiar as it breaks the typical pattern of two impact flares per 12-yr cycle. This is the third bremsstrahlung flare of the current cycle that follows the already observed 2015 and 2019 impact flares from OJ 287. It turns out that the arrival epoch of flare number 26 is sensitive to the level of primary SMBH’s accretion disc relative to its mean level in our model. We incorporate these tidally induced changes in the level of the accretion disc to infer that the thermal flare should have occurred during 2022 July–August, when it was not possible to observe it from the Earth. Thereafter, we explore possible observational evidence for certain pre-flare activity by employing spectral and polarimetric data from our campaigns in 2004/05 and 2021/22. We point out theoretical and observational implications of two observed mini-flares during 2022 January–February.
-
Monthly Notices of the Royal Astronomical Society 520(2) 2633-2643 2023年4月 査読有りABSTRACT Flaring episodes in blazars represent one of the most violent processes observed in extra-galactic objects. Studies of such events shed light on the energetics of the physical processes occurring in the innermost regions of blazars, which cannot otherwise be resolved by any current instruments. In this work, we present some of the largest and most rapid flares captured in the optical band in the blazars 3C 279, OJ 49, S4 0954+658, TXS 1156+295, and PG 1553+113. The source flux was observed to increase by nearly ten times within a time-scale of a few weeks. We applied several methods of time series analysis and symmetry analysis. Moreover, we also performed searches for periodicity in the light curves of 3C 279, OJ 49 and PG 1553+113 using the Lomb–Scargle method and found plausible indications of quasi-periodic oscillations (QPOs). In particular, the 33- and 22-day periods found in 3C 279, i.e. a 3:2 ratio, are intriguing. These violent events might originate from magnetohydrodynamical instabilities near the base of the jets, triggered by processes modulated by the magnetic field of the accretion disc. We present a qualitative treatment as the possible explanation for the observed large amplitude flux changes in both the source-intrinsic and source-extrinsic scenarios.
-
Nature 609(7926) 265-268 2022年9月8日 査読有りBlazars are active galactic nuclei (AGN) with relativistic jets whose non-thermal radiation is extremely variable on various timescales1-3. This variability seems mostly random, although some quasi-periodic oscillations (QPOs), implying systematic processes, have been reported in blazars and other AGN. QPOs with timescales of days or hours are especially rare4 in AGN and their nature is highly debated, explained by emitting plasma moving helically inside the jet5, plasma instabilities6,7 or orbital motion in an accretion disc7,8. Here we report results of intense optical and γ-ray flux monitoring of BL Lacertae (BL Lac) during a dramatic outburst in 2020 (ref. 9). BL Lac, the prototype of a subclass of blazars10, is powered by a 1.7 × 108 MSun (ref. 11) black hole in an elliptical galaxy (distance = 313 megaparsecs (ref. 12)). Our observations show QPOs of optical flux and linear polarization, and γ-ray flux, with cycles as short as approximately 13 h during the highest state of the outburst. The QPO properties match the expectations of current-driven kink instabilities6 near a recollimation shock about 5 parsecs (pc) from the black hole in the wake of an apparent superluminal feature moving down the jet. Such a kink is apparent in a microwave Very Long Baseline Array (VLBA) image....
-
Monthly Notices of the Royal Astronomical Society 514(2) 3017-3023 2022年8月 査読有りABSTRACT OJ 287 is a BL Lacertae type quasar in which the active galactic nucleus (AGN) outshines the host galaxy by an order of magnitude. The only exception to this may be at minimum light when the AGN activity is so low that the host galaxy may make quite a considerable contribution to the photometric intensity of the source. Such a dip or a fade in the intensity of OJ 287 occurred in 2017 November, when its brightness was about 1.75 mag lower than the recent mean level. We compare the observations of this fade with similar fades in OJ 287 observed earlier in 1989, 1999, and 2010. It appears that there is a relatively strong reddening of the B− V colours of OJ 287 when its V-band brightness drops below magnitude 17. Similar changes are also seen in V− R, V− I, and R− I colours during these deep fades. These data support the conclusion that the total magnitude of the host galaxy is V = 18.0 ± 0.3, corresponding to MK = −26.5 ± 0.3 in the K-band. This is in agreement with the results, obtained using the integrated surface brightness method, from recent surface photometry of the host. These results should encourage us to use the colour separation method also in other host galaxies with strongly variable AGN. In the case of OJ 287, both the host galaxy and its central black hole are among the biggest known, and its position in the black hole mass–galaxy mass diagram lies close to the mean correlation.
-
Monthly Notices of the Royal Astronomical Society 513(2) 1662-1679 2022年6月 査読有りABSTRACT The study of short-term variability properties in AGN jets has the potential to shed light on their particle acceleration and emission mechanisms. We report results from a 4-d coordinated multiwavelength campaign on the highly peaked blazar (HBL) Mkn 421 in 2019 January. We obtained X-ray data from AstroSAT, BVRI photometry with the Whole Earth Blazar Telescope (WEBT), and TeV data from First G-APD Cherenkov Telescope to explore short-term multiwavelength variability in this HBL. The X-ray continuum is rapidly variable on time-scales of tens of ks. Fractional variability amplitude increases with energy across the synchrotron hump, consistent with previous studies; we interpret this observation in the context of a model with multiple cells whose emission spectra contain cutoffs that follow a power-law distribution. We also performed time-averaged and time-resolved (time-scales of 6 ks) spectral fits; a broken power-law model fits all spectra well; time-resolved spectral fitting reveals the usual hardening when brightening behaviour. Intra-X-ray cross-correlations yield evidence for the 0.6–0.8 keV band to likely lead the other bands by an average of 4.6 ± 2.6 ks, but only during the first half of the observation. The source displayed minimal night-to-night variability at all wavebands thus precluding significant interband correlations during our campaign. The broad-band SED is modelled well with a standard one-zone leptonic model, yielding jet parameters consistent with those obtained from previous SEDs of this source.
-
Publications of the Astronomical Society of Japan 73 753-771 2021年6月 査読有り
-
Publications of the Astronomical Society of Japan 73 1-13 2021年2月 査読有りAbstract We report on the multi-wavelength photometry of the 2018 superoutburst in EG Cnc. We have detected stage A superhumps and long-lasting late-stage superhumps via the optical photometry and have constrained the binary mass ratio and its possible range. The median value of the mass ratio is 0.048 and the upper limit is 0.057, which still implies that EG Cnc is one of the possible candidates for period bouncers. This object also showed multiple rebrightenings in this superoutburst which are the same as those in its previous superoutburst in 1996–1997, despite the difference in the main superoutburst. This would represent that the rebrightening type is inherent to each object and is independent of the initial disk mass at the beginning of superoutbursts. We also found that B − I and J − Ks colors were unusually red just before the rebrightening phase and became bluer during the quiescence between rebrightenings, which would mean that the low-temperature mass reservoir at the outermost disk accreted with time after the main superoutburst. Also, the ultraviolet flux was sensitive to rebrightenings as well as the optical flux, and the U − B color became redder during the rebrightening phase, which would indicate that the inner disk became cooler when this object repeated rebrightenings. Our results thus basically support the idea that the cool mass reservoir in the outermost disk is responsible for rebrightenings.
-
Monthly Notices of the Royal Astronomical Society 501 1100-1115 2021年2月 査読有り
-
Astrophysical Journal 900 137 2020年9月 査読有り
-
Astrophysical Journal 894 L1 2020年5月 査読有り
-
Monthly Notices of the Royal Astronomical Society 492(3) 3829-3848 2020年3月 査読有りABSTRACT We report the results of decade-long (2008–2018) γ-ray to 1 GHz radio monitoring of the blazar 3C 279, including GASP/WEBT, Fermi and Swift data, as well as polarimetric and spectroscopic data. The X-ray and γ-ray light curves correlate well, with no delay $\gtrsim 3$ h, implying general cospatiality of the emission regions. The γ-ray–optical flux–flux relation changes with activity state, ranging from a linear to a more complex dependence. The behaviour of the Stokes parameters at optical and radio wavelengths, including 43 GHz Very Long Baseline Array images, supports either a predominantly helical magnetic field or motion of the radiating plasma along a spiral path. Apparent speeds of emission knots range from 10 to 37c, with the highest values requiring bulk Lorentz factors close to those needed to explain γ-ray variability on very short time-scales. The Mg ii emission line flux in the ‘blue’ and ‘red’ wings correlates with the optical synchrotron continuum flux density, possibly providing a variable source of seed photons for inverse Compton scattering. In the radio bands, we find progressive delays of the most prominent light-curve maxima with decreasing frequency, as expected from the frequency dependence of the τ = 1 surface of synchrotron self-absorption. The global maximum in the 86 GHz light curve becomes less prominent at lower frequencies, while a local maximum, appearing in 2014, strengthens toward decreasing frequencies, becoming pronounced at ∼5 GHz. These tendencies suggest different Doppler boosting of stratified radio-emitting zones in the jet.
-
Publications of the Astronomical Society of Japan 72 11 2020年2月 査読有りAbstract IW And stars are a recently recognized group of dwarf novae which are characterized by a repeated sequence of brightening from a standstill-like phase with damping oscillations followed by a deep dip. Kimura et al. (2019, PASJ, submitted) recently proposed a model based on thermal-viscous disk instability in a tilted disk to reproduce the IW And-type characteristics. IM Eri experienced the IW And-type phase in 2018 and we recorded three cycles of the (damping) oscillation phase terminated by brightening. We identified two periods during the IW And-type state: 4–5 d small-amplitude (often damping) oscillations and a 34–43 d long cycle. This behavior is typical for an IW And-type star. The object gradually brightened within the long cycle before the next brightening, which terminated the (damping) oscillation phase. This observation agrees with the increasing disk mass during the long cycle predicted by the Kimura et al. model of thermal-viscous disk instability in a tilted disk. We did not, however, succeed in detecting negative superhumps, which are considered to be the signature of a tilted disk.
-
Monthly Notices of the Royal Astronomical Society 490(4) 5300-5316 2019年12月 査読有りABSTRACT We present a multiwavelength study of the flat-spectrum radio quasar CTA 102 during 2013–2017. We use radio-to-optical data obtained by the Whole Earth Blazar Telescope, 15 GHz data from the Owens Valley Radio Observatory, 91 and 103 GHz data from the Atacama Large Millimeter Array, near-infrared data from the Rapid Eye Monitor telescope, as well as data from the Swift (optical-UV and X-rays) and Fermi (γ-rays) satellites to study flux and spectral variability and the correlation between flux changes at different wavelengths. Unprecedented γ-ray flaring activity was observed during 2016 November–2017 February, with four major outbursts. A peak flux of (2158 ± 63) × 10−8 ph cm−2 s−1, corresponding to a luminosity of (2.2 ± 0.1) × 1050 erg s−1, was reached on 2016 December 28. These four γ-ray outbursts have corresponding events in the near-infrared, optical, and UV bands, with the peaks observed at the same time. A general agreement between X-ray and γ-ray activity is found. The γ-ray flux variations show a general, strong correlation with the optical ones with no time lag between the two bands and a comparable variability amplitude. This γ-ray/optical relationship is in agreement with the geometrical model that has successfully explained the low-energy flux and spectral behaviour, suggesting that the long-term flux variations are mainly due to changes in the Doppler factor produced by variations of the viewing angle of the emitting regions. The difference in behaviour between radio and higher energy emission would be ascribed to different viewing angles of the jet regions producing their emission.
-
Monthly Notices of the Royal Astronomical Society 489(1) 1451-1462 2019年10月 査読有りAbstract The cataclysmic variable SDSS J214354.59+124457.8 (hereafter SDSS J214354) was observed photometrically on sixty one nights between 2012 July 28 and 2019 May 26. The long term variation of this object shows changes between two phases; a dwarf nova type and a novalike. This implies that the object belongs to the group of Z Cam type stars. The timing analysis of the light curve reveals a periodic signal at 0.13902(5) d, which we identify as the superhump period. However, the fractional superhump excess of 10 per cent longer than the orbital period is exceptionally large. We obtained a mass ratio of ∼0.4, which is above the accepted upper limit of q = 0.33 for the formation of superhumps. We suggest that the object contains a secondary with an evolved core. With an orbital period of 0.126 d, SDSS J214354 is situated at the upper border of the period gap. The long term light curve of SDSS J214354 is similar to those of Z Cam type stars which are characterized by recurring standstills, followed by short intervals with DN type outbursts. Therefore, we conclude that SDSS J214354 is a new member of the Z Cam type stars.
-
Publications of the Astronomical Society of Japan 71 L1 2019年4月 査読有りAbstract We found that the SU UMa-type dwarf nova NY Ser in the period gap [orbital period 0.097558(6) d] showed standstills twice in 2018. This is the first clear demonstration of a standstill occurring between superoutbursts of an SU UMa-type dwarf nova. There was no sign of superhumps during the standstill, and at least one superoutburst directly started from the standstill. This provides strong evidence that the 3:1 resonance was excited during standstills. This phenomenon indicates that the disk radius can grow during standstills. We also deduce that the condition close to the limit of the tidal instability caused early quenching of superoutbursts, which resulted in a substantial amount of matter left in the disk after the superoutburst. We think that substantial matter in the disk in a condition close to the limit of the tidal instability is responsible for standstills (as in the high-mass-transfer system NY Ser) or multiple rebrightenings (as in the low-mass-transfer system V1006 Cyg).
-
VizieR Online Data Catalog 2019年2月A major achievement for the 2016 eruption campaign was the addition of extensive observations from the American Association of Variable Star Observers (AAVSO), along with the continued support of the Variable Star Observers League in Japan (VSOLJ; see Section 3.1 and Appendix A). Observations were also obtained from the Mount Laguna Observatory (MLO) 1.0m telescope in California, the Ondrejov Observatory 0.65m telescope in the Czech Republic, the Danish 1.54m telescope at La Silla in Chile, the fully robotic 2m Liverpool Telescope (LT) in La Palma, the 2.54m Isaac Newton Telescope (INT) at La Palma, the Palomar 48" telescope in California, the 0.6m and 1m telescopes operated by members of the Embry Riddle Aeronautical University (ERAU) in Florida, the 2x8.4m (11.8m eq.) Large Binocular Telescope (LBT) on Mount Graham, Arizona, the 2m Himalayan Chandra Telescope (HCT) located at Indian Astronomical Observatory (IAO), Hanle, India, and the 2.4m Hubble Space Telescope. <P />The 2016 eruption and pre-eruption interval of M31N 2008-12a were observed serendipitously by HST WFC3/UVIS as part of Program ID: 14651. <P />The spectroscopic confirmation of the 2016 eruption of M31N 2008-12a was announced by Darnley+ (2016ATel.9852....1D), with additional spectroscopic follow-up reported in Pavana & Anupama (2016ATel.9865....1P). <P />We obtained several spectra of the 2016 eruption with SPRAT, the low-resolution, high-throughput spectrograph on the LT. SPRAT covers the wavelength range of 4000-8000Å (resolution of ~18Å). We obtained an early spectrum of the nova, 0.54 days after eruption, using the Andalucia Faint Object Spectrograph and Camera (ALFOSC) on the 2.5m Nordic Optical Telescope (NOT) at the Roque de los Muchachos Observatory on La Palma. In addition, 1.87 days after eruption, we obtained a spectrum of M31N 2008-12a using the blue channel of the 10m Hobby Eberly Telescope's (HET's) new integral-field Low Resolution Spectrograph (LRS2-B). Two epochs of spectra were obtained using the Himalayan Faint Object Spectrograph and Camera (HFOSC) mounted on the 2m HCT located at IAO, Hanle, India. Three spectra were obtained with the 3.5m Astrophysical Research Consortium (ARC) telescope at the Apache Point Observatory, during the first half of the night on 2016 December 12, 13, and 17 (UT December 13, 14, and 18). <P />A Neil Gehrels Swift Observatory target of opportunity (ToO) request was submitted immediately after confirming the eruption, and the satellite began observing the nova on 2016 December 12.65 UT. <P />In addition, we triggered a 100ks XMM-Newton ToO. The XMM-Newton object ID is 078400. In addition, we obtained UV data using the XMM-Newton optical/UV monitor telescope. <P />(1 data file)....
-
VizieR Online Data Catalog 2019年2月The data were obtained under campaigns led by the Variable Star Network (VSNET) Collaboration (Kato et al., 2004PASJ...56S...1K). We also used the public data from the American Association of Variable Star Observers (AAVSO) International Database (https://www.aavso.org/data-download). Outburst detections of many new and known objects relied on the All-Sky Automated Survey for Supernovae (ASAS-SN) CV patrol (Davis et al. 2015, http://cv.asassn.astronomy.ohio-state.edu/) the MASTER network (Gorbovskoy et al., 2013ARep...57..233G), and the Catalina Real-time Transient Survey (CRTS: Drake et al. 2009, http://nesssi.cacr.caltech.edu/catalina/) in addition to outburst detections reported to VSNET, AAVSO (https://www.aavso.org), British Astronomical Association, Variable Star Section (BAAVSS) alert (https://groups.yahoo.com/neo/groups/baavss-alert), and cvnet-outburst (https://groups.yahoo.com/neo/groups/cvnet-outburst). <P />(2 data files)....
-
Publications of the Astronomical Society of Japan 70 111 2018年12月 査読有りAbstract We present optical and near-infrared observations of the nearby Type Iax supernova (SN) 2014dt from 14 to 410 d after the maximum light. The velocities of the iron absorption lines in the early phase indicated that SN 2014dt showed slower expansion than the well-observed Type Iax SNe 2002cx, 2005hk, and 2012Z. In the late phase, the evolution of the light curve and that of the spectra were considerably slower. The spectral energy distribution kept roughly the same shape after ∼100 d, and the bolometric light curve flattened during the same period. These observations suggest the existence of an optically thick component that almost fully trapped the γ-ray energy from 56Co decay. These findings are consistent with the predictions of the weak deflagration model, leaving a bound white dwarf remnant after the explosion.
-
Astrophysical Journal 866 11 2018年10月 査読有りAbstract Results from regular monitoring of relativistic compact binaries like PSR 1913+16 are consistent with the dominant (quadrupole) order emission of gravitational waves (GWs). We show that observations associated with the binary black hole (BBH) central engine of blazar OJ 287 demand the inclusion of gravitational radiation reaction effects beyond the quadrupolar order. It turns out that even the effects of certain hereditary contributions to GW emission are required to predict impact flare timings of OJ 287. We develop an approach that incorporates this effect into the BBH model for OJ 287. This allows us to demonstrate an excellent agreement between the observed impact flare timings and those predicted from ten orbital cycles of the BBH central engine model. The deduced rate of orbital period decay is nine orders of magnitude higher than the observed rate in PSR 1913+16, demonstrating again the relativistic nature of OJ 287's central engine. Finally, we argue that precise timing of the predicted 2019 impact flare should allow a test of the celebrated black hole “no-hair theorem” at the 10% level.
-
Astrophysical Journal 863 175 2018年8月 査読有りAbstract We present the results of our power spectral density analysis for the BL Lac object OJ 287, utilizing the Fermi-LAT survey at high-energy γ-rays, Swift-XRT in X-rays, several ground-based telescopes and the Kepler satellite in the optical, and radio telescopes at GHz frequencies. The light curves are modeled in terms of continuous-time autoregressive moving average (CARMA) processes. Owing to the inclusion of the Kepler data, we were able to construct for the first time the optical variability power spectrum of a blazar without any gaps across ∼6 dex in temporal frequencies. Our analysis reveals that the radio power spectra are of a colored-noise type on timescales ranging from tens of years down to months, with no evidence for breaks or other spectral features. The overall optical power spectrum is also consistent with a colored noise on the variability timescales ranging from 117 years down to hours, with no hints of any quasi-periodic oscillations. The X-ray power spectrum resembles the radio and optical power spectra on the analogous timescales ranging from tens of years down to months. Finally, the γ-ray power spectrum is noticeably different from the radio, optical, and X-ray power spectra of the source: we have detected a characteristic relaxation timescale in the Fermi-LAT data, corresponding to ∼150 days, such that on timescales longer than this, the power spectrum is consistent with uncorrelated (white) noise, while on shorter variability timescales there is correlated (colored) noise.
-
Publications of the Astronomical Society of Japan 70 78 2018年8月 査読有りAbstract There are several peculiar long-period dwarf-nova-like objects that show rare, low-amplitude outbursts with highly ionized emission lines; 1SWASP J162117+441254, BD Pav, and V364 Lib are among them. Some researchers even doubt whether 1SWASP J1621 and V364 Lib have the same nature as normal dwarf novae. We studied the peculiar outbursts in these three objects via our optical photometry and spectroscopy, and performed numerical modeling of their orbital variations to investigate their properties. We found that their outbursts lasted for a long interval (a few tens of days), and that slow rises in brightness were commonly observed during the early stage of their outbursts. Our analyses and numerical modeling suggest that 1SWASP J1621 has a very high inclination, close to 90°, plus a faint hot spot. Although BD Pav seems to have a slightly lower inclination (∼75°), the other properties are similar to those in 1SWASP J1621. On the other hand, V364 Lib appears to have a massive white dwarf, a hot companion star, and a low inclination (∼35°). In addition, these three objects possibly have a low transfer rate and/or large disks originating from the long orbital periods. We found that these properties of the three objects can explain their infrequent and low-amplitude outbursts within the context of the disk instability model in normal dwarf novae without a strong magnetic field. In addition, we suggest that the highly ionized emission lines in outburst are observed due to a high inclination and/or a massive white dwarf. More instances of this class of object may be unrecognized, since their unremarkable outbursts can be easily overlooked.
-
Astrophysical Journal 857 68 2018年4月 査読有りAbstract Since its discovery in 2008, the Andromeda galaxy nova M31N 2008-12a has been observed in eruption every single year. This unprecedented frequency indicates an extreme object, with a massive white dwarf and a high accretion rate, which is the most promising candidate for the single-degenerate progenitor of a Type Ia supernova known to date. The previous three eruptions of M31N 2008-12a have displayed remarkably homogeneous multiwavelength properties: (i) from a faint peak, the optical light curve declined rapidly by two magnitudes in less than two days, (ii) early spectra showed initial high velocities that slowed down significantly within days and displayed clear He/N lines throughout, and (iii) the supersoft X-ray source (SSS) phase of the nova began extremely early, six days after eruption, and only lasted for about two weeks. In contrast, the peculiar 2016 eruption was clearly different. Here we report (i) the considerable delay in the 2016 eruption date, (ii) the significantly shorter SSS phase, and (iii) the brighter optical peak magnitude (with a hitherto unobserved cusp shape). Early theoretical models suggest that these three different effects can be consistently understood as caused by a lower quiescence mass accretion rate. The corresponding higher ignition mass caused a brighter peak in the free–free emission model. The less massive accretion disk experienced greater disruption, consequently delaying the re-establishment of effective accretion. Without the early refueling, the SSS phase was shortened. Observing the next few eruptions will determine whether the properties of the 2016 outburst make it a genuine outlier in the evolution of M31N 2008-12a.
-
日本科学教育学会年会論文集 42 443-444 2018年全国学カ・学習状況調査・小学校理科調査間題(H27 年度)を,理,工学部に所属する中裔理科教員志望大学生に解答してもらい,その結果を小学校児童の調査結果と比較した。調査対象の大学生の平均正解率は87.5%であった(H27 年度小学6 年生の正解率60.8%)。主に知識を間う「A」間題については,間題によって大学生の正解率にばらつきがみられ,主に活用を間う「B」間題については,ほとんどが 90%近い正解率であった。記述式の間題では,無回答はほとんどない一方,正解基準に求められる意見と根拠の両方の記述と書き分けは,24%程度に留まった。
MISC
1書籍等出版物
5担当経験のある科目(授業)
13-
2021年 - 現在地学II (大阪教育大学)
-
2020年 - 現在実践課題研究 I, II (大阪教育大学)
-
2019年 - 現在高度教科内容研究 [天文] (大阪教育大学)
-
2012年 - 現在教職実践演習 (大阪教育大学)
-
2009年 - 現在理科ゼミナール (大阪教育大学)
共同研究・競争的資金等の研究課題
4-
日本学術振興会 科学研究費助成事業 基盤研究(C) 2019年4月 - 2024年3月
-
日本学術振興会 科学研究費助成事業 研究成果公開促進費 2008年 - 2010年
-
日本学術振興会 科学研究費助成事業 特別研究員奨励費 1999年 - 2000年
-
日本天文学会 第21回早川幸男基金 1998年
学術貢献活動
9-
企画立案・運営等, パネル司会・セッションチェア等https://quasar.cc.osaka-kyoiku.ac.jp/tenmon-hs/ 2011年 - 現在
-
企画立案・運営等http://web.wakayama-u.ac.jp/~atomita/nasejapan2019/ 2019年11月9日 - 2019年11月10日
社会貢献活動
25その他
3-
2022年9月https://quasar.cc.osaka-kyoiku.ac.jp/~katsura/BL_Lac.html
-
2020年4月https://quasar.cc.osaka-kyoiku.ac.jp/~katsura/OJ_287.html
-
2017年12月https://quasar.cc.osaka-kyoiku.ac.jp/~katsura/CTA_102.html