研究者業績

馬場 良始

ババ ヨシトモ  (Yoshitomo Baba)

基本情報

所属
大阪教育大学 理数情報教育系 教授
学位
修士(理学)(大阪市立大学)
Doctor (Science)(Osaka City University)
博士(理学)(大阪市立大学)

研究者番号
10201724
J-GLOBAL ID
200901016856578412
researchmap会員ID
1000038538

研究キーワード

 3

経歴

 6

論文

 26
  • Yoshitomo BABA
    Hokkaido Mathematical Journal 51(3) 2022年10月1日  査読有り
  • Yoshitomo BABA
    Ring Theory 2019 151-167 2021年  査読有り
  • Yoshitomo BABA
    Math.J.Okayama Univ. 63 183-199 2021年  査読有り
  • 桑田勝矢, 新濱光紀, 馬場良始
    数学教育研究 46 61-86 2017年  査読有り
  • 馬場 良始
    数学教育研究 = Osaka Journal of Mathematics Education (44) 89-113 2015年  査読有り
  • 馬場 良始
    数学教育研究 42(42) 61-85 2013年  査読有り
  • 馬場 良始
    数学教育研究 42(42) 37-59 2013年  査読有り
  • 馬場 良始
    数学教育研究 41(41) 71-94 2012年  査読有り
  • Baba Yoshitomo, Yamazaki Takeshi
    Mathematical Journal of Okayama University 53(1) 101-109 2011年  査読有り
    The concept of almost N-projectivity is defined in [5] by M. Harada and A. Tozaki to translate the concept "lifting module" in terms of homomorphisms. In [6, Theorem 1] M. Harada defined a little weaker condition "almost N-simple-projecive" and gave the followingrelationship between them: For a semiperfect ring R and R-modules M and N of finite length,M is almost N-projective if and only if M is almost N-simple-projective. We remove the assumption "of finite length" and give the result in Theorem 5 as follows: For a semiperfect ring R, a finitely generated right R-module Mand an indecomposable right R-module N of finite Loewy length, M is almost N-projective if and only if M is almost N-simple-projective. We also see that, for a semiperfect ring R, a finitely generated R-module M and an R-module N of finite Loewy length, M is N-simple-projective if and only if M is N-projective.
  • Yoshitomo Baba
    RING THEORY 2007, PROCEEDINGS 173-182 2009年  査読有り
    In [10, Theorem 3.1] K. R. Fuller characterized indecomposable injective projective modules over artinian rings using i-pairs. In [3] the author generalized this theorem to indecomposable projective quasi-injective modules and indecomposable quasi-projective injective modules over artiniain rings. In [2] the author and K. Oshiro studied the above Fuller's theorem minutely. And M. Morimoto and T. Sumioka generzlized these results to modules in [17]. Further in [13] M. Hoshino and T, Sumioka extended the results in [3] to perfect rings and consider the condition "colocal pairs". Furthermore in [7] the anther studied the results in [3] from the point of view of [2] and [13] and gave results on colocal pairs. The purpose of this note is to report about this development.
  • Yoshitomo Baba
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS 7(3) 275-298 2008年6月  査読有り
    We define Harada rings of a component type. The class of them contains indecomposable serial rings. We consider the structure of them and show that they have weakly symmetric self-dualities.
  • 住岡 武, 馬場 良始
    数学教育研究 37(37) 149-165 2007年  査読有り
  • Yoshitomo Baba
    Scientiae Mathematicae Japonicae 63(1) 113--130 2006年  査読有り
  • Yoshitomo Baba
    Advances in Ring Theory 1-11 2005年  査読有り
  • 岩瀬 謙一, 馬場 良始
    数学教育研究 (33) 139-148 2003年  査読有り
  • Yoshitomo Baba
    Communications in Algebra 30(6) 2583-2592 2002年6月  査読有り
  • Baba Yoshitomo, Miki Hiroyuki
    Tsukuba Journal of Mathematics 26(2) 237-250 2002年  査読有り
  • Yoshitomo Baba
    Communications in Algebra 28(6) 2639-2669 2000年  査読有り
    In [23] H. Tachikawa gave two theorems: Every maximal quotient QF-3 ring is represented as an endomorphism ring of some kind of module Every QF-3 ring is a special subring of the maximal quotient QF-3 ring. These theorems are a little sophisticated in [18]. On the other hand, in [3] Y. Baba and K. Iwase defined quasi-Harada rings (abbreviated QH rings) and showed that QH rings are QF-3. So now we have several rings which are also QF-3 rings: Serial rings, one-sided Harada rings, quasi-Harada rings, and (one-sided artinian) QF-2 rings. In this paper we apply the above two theorems for QF-3 rings to these rings. And we study the structure of these rings.
  • Baba Yoshitomo, Miki Hiroyuki
    Mathematical Journal of Okayama University 42(1) 29-54 2000年  査読有り
  • Yoshitomo Baba
    Communications in Algebra 28(6) 2671-2684 2000年  査読有り
  • Y Baba, K Iwase
    JOURNAL OF ALGEBRA 185(2) 544-570 1996年10月  査読有り
    M. Harada (''Ring Theory, Proceedings of 1978 Antwerp Conference,'' pp. 669-690, Dekker, New York, 1979) studied the following two conditions: (*) Every non-small left R-module contains a non-zero injective submodule. (*)* Every non-cosmall right R-module contains a non-zero projective direct summand. K. Oshiro (Hokkaido Math. J. 13, 1984, 310-338) further studied the above conditions, and called a left artinian ring with (*) a left Harada ring (abbreviated left H-ring) and a ring satisfying the ascending chain condition for right annihilator ideals with (*)* a right co-Harada ring (abbreviated right co-H-ring). K. Oshiro (Math. J. Okayamn Univ. 31, 1989, 161-178) showed that left PI-rings and right co-H-rings are the same rings. Here we are particularly interested in the following characterization of a left H-ring given in Harada's paper above: A ring R is a left I-I-ring if and only if R is a perfect ring and for any left non-small primitive idempotent e of R there exists a non-negative integer t(e) such that (a)(R)Re/S-k(Re-R) is injective for any k is an element of {0,..., t(e)} and (b) Re-R/S-te+1(Re-R) is a small module, where S-k(Re-R) denotes the k-th socle of the left R-module Re. This characterization implies (+) S-te+1(Re-R) is a uniserial left R-module for any left non-small primitive idempotent e in a left H-ring R. In this paper, we generalize left H-rings by removing (+). Concretely, since a left H-ring R is also characterized by the statement that R is left artinian and for any primitive idempotent g of R there exist a primitive idempotent e(g) of R and a non-negative integer k(g) such that the injective hull of the left R-modure Rg/Jg is isomorphic to Re/S-kp(Re-R(g)), where J is the Jacobson radical of (R)R, we define a more general class of rings by the condition that for any primitive idempotent g of R there exists a primitive idempotent e of R such that the injective hull of the left R-module Rg/Jg is isomorphic to Re/{x is an element of Re\gRx = 0}, and call it a left quasi-Harada ring (abbreviated left QH ring). In Section 1 we characterize a left QH ring by generalizing the characterizations of a left H-ring given by M. Harada and K. Oshiro. We also consider the weaker rings, left QF-2 rings and right QF-2* rings. K. Oshiro (Math. J. Okayama Univ. 32, 1990, 111-118) described the connection between left H-rings and QF rings. In Section 2 we describe the connection between two-sided QH rings and QF rings. (C) 1996 Academic Press, Inc.
  • Y BABA, K OSHIRO
    JOURNAL OF ALGEBRA 154(1) 86-94 1993年1月  査読有り
  • Yoshitomo Baba, Manabu Harada
    Tsukuba Journal of Mathematics 14(1) 53-69 1990年  査読有り
  • Yoshitomo Baba
    Osaka Journal of Mathematics 26(3) 687-698 1989年  査読有り
  • Y BABA, M HARADA
    OSAKA JOURNAL OF MATHEMATICS 24(1) 139-145 1987年3月  査読有り

MISC

 1

書籍等出版物

 3

講演・口頭発表等

 6

所属学協会

 1

共同研究・競争的資金等の研究課題

 16