Osaka Kyoiku University Researcher Information
日本語 | English
研究者業績
基本情報
- 所属
- 大阪教育大学 理数情報教育系 准教授
- 学位
- 修士(数理科学)(東京大学)Doctor(Science)(Kyoto University)博士(理学)(京都大学)
- 研究者番号
- 70362746
- J-GLOBAL ID
- 200901009386720920
- researchmap会員ID
- 5000053551
- 外部リンク
研究キーワード
1研究分野
1経歴
6-
2017年4月
-
2014年4月 - 2016年3月
-
2007年4月
-
2006年4月 - 2007年3月
-
2005年4月 - 2007年3月
学歴
2-
- 2003年
-
- 1998年
論文
17-
Publications of Research Institute for Mathematical Sciences, Kyoto university 2022年 査読有り
-
Mathematica Scandinavica 121(1) 75-91 2017年 査読有りThe Haagerup approximation property (HAP) is defined for finite von Neumann algebras in such a way that the group von Neumann algebra of a discrete group has the HAP if and only if the group itself has the Haagerup property. The HAP has been studied extensively for finite von Neumann algebras and it was recently generalized to arbitrary von Neumann algebras by Caspers-Skalski and Okayasu-Tomatsu. One of the motivations behind the generalization is the fact that quantum group von Neumann algebras are often infinite even though the Haagerup property has been defined successfully for locally compact quantum groups by Daws-Fima-Skalski-White. In this paper, we fill this gap by proving that the von Neumann algebra of a locally compact quantum group with the Haagerup property has the HAP. This is new even for genuine locally compact groups.
-
Journal of Operator Theory 75(2) 259-288 2016年 査読有りWe introduce the notion of the a-Haagerup approximation property (α-HAP) for α ∈ [0, 1/2] using a one-parameter family of positive cones studied by Araki and show that the a-HAP actually does not depend on the choice of α. This enables us to prove the fact that the Haagerup approximation properties introduced in two ways are actually equivalent, one in terms of the standard form and the other in terms of completely positive maps. We also discuss the Lp-Haagerup approximation property (Lp-HAP) for a noncommutative Lp-space associated with a von Neumann algebra for p ∈ (1,∞) and show the independence of the Lp-HAP on the choice of p.
-
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES 51(3) 567-603 2015年9月 査読有りWe attempt presenting a notion of the Haagerup approximation property for an arbitrary von Neumann algebra by using its standard form. We also prove the expected heredity results for this property.
-
COMPTES RENDUS MATHEMATIQUE 352(6) 507-510 2014年6月 査読有りThe notion of the Haagerup approximation property, originally introduced for von Neumann algebras equipped with a faithful normal tracial state, is generalised to arbitrary von Neumann algebras. We discuss two equivalent characterisations, one in term of the standard form and the other in term of the approximating maps with respect to a fixed faithful normal semifinite weight. Several stability properties, in particular regarding the crossed product construction are established and certain examples are introduced. (C) 2014 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
-
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY 138(10) 3609-3621 2010年10月 査読有りVoiculescu's topological approximation entropy is extended to automorphisms on unital simple C*-algebras with tracial rank zero. Several expected properties are shown. We also consider the value of our entropy for a cat map on the non-commutative torus.
-
INTERNATIONAL JOURNAL OF MATHEMATICS 21(4) 537-550 2010年4月 査読有りFor finite dimensional abelian subalgebras of a finite von Neumann algebra, we obtain the value of conditional relative entropy defined by Choda. We also consider the modified invariant defined by Pimsner and Popa.
-
ISRAEL JOURNAL OF MATHEMATICS 163(1) 285-316 2008年1月 査読有りWe consider the harmonic measure on the Gromov boundary of a non-amenable hyperbolic group defined by a finite range random walk on the group, and study the corresponding orbit equivalence relation on the boundary. It is known to be always amenable and of type III. We determine its ratio set by showing that it is generated by certain values of the Martin kernel. In particular, we show that the equivalence relation is never of type III0.
-
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY 134(6) 1771-1776 2006年 査読有りWe compute the exact value of Voiculescu's perturbation theoretic entropy of the boundary actions of free groups. This result is a partial answer of Voiculescu's question.
-
PACIFIC JOURNAL OF MATHEMATICS 223(1) 141-157 2006年1月 査読有りLet Gamma be a Gromov hyperbolic group with a finite set A of generators. We prove that h(top)(Sigma(infinity)) <= k(infinity)(-1)(lambda(A)) <= gr(Gamma, A), where gr(Gamma, A) is the growth entropy, h(top)(Sigma(infinity)) is the Coornaert-Papadopoulos topological entropy of the subshift Sigma(infinity) associated with (Gamma, A), and k(infinity)(-1)(lambda(A)) is Voiculescu's numerical invariant, which is an obstruction to the existence of quasicentral approximate units relative to the Macaev norm for a tuple of unitary operators lambda(A) = (lambda(a))(a is an element of A) in the left regular representation of Gamma. We also prove that these three quantities are equal for a hyperbolic group splitting over a finite group.
-
MATHEMATICA SCANDINAVICA 97(1) 49-72 2005年 査読有りWe construct a nuclear C*-algebra associated with the fundamental group of a graph of groups of finite type. It is well-known that every word-hyperbolic group with zero-dimensional boundary, in other words, every group acting trees with finite stabilizers is given by the fundamental group of such a graph of groups. We show that our C*-algebra is *-isomorphic to the crossed product arising from the associated boundary action and is also given by a Cuntz-Pimsner algebra. We also compute the K-groups and determine the ideal structures of our C*-algebras.
-
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN 56(1) 177-191 2004年1月 査読有りWe obtain the exact value of Voiculescu's invariant k(infinity)(-)(tau), which is an obstruction of the existence of quasicentral approximate units relative to the Macaev ideal in perturbation theory, for a tuple tau of operators in the following two classes: (1) creation operators associated with a subshift, which are used to define Matsumoto algebras, (2) unitaries in the left regular representation of a finitely generated group.
-
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY 131(7) 2145-2153 2003年 査読有りWe determine the types of factors arising from GNS-representations of quasi-free KMS states on Cuntz-Krieger algebras. Applying our result to the Cuntz-Krieger algebras arising from the boundary actions of some amalgamated free product groups, we also determine the types of harmonic measures on the boundaries.
-
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES 38(1) 147-190 2002年2月 査読有りWe give a construction of a nuclear C*-algebra associated with an amalgamated free product of groups, generalizing Spielberg's construction of a certain Cuntz-Krieger algebra associated with a finitely generated free product of cyclic groups. Our nuclear C*-algebras can be identified with certain Cuntz-Krieger-Pimsner algebras. We will also show that our algebras can be obtained by the crossed product construction of the canonical actions on the hyperbolic boundaries, which proves a special case of Adams' result about amenability of the boundary action for hyperbolic groups. We will also give an explicit formula of the K-groups of our algebras. Finally we will investigate a relationship between the KMS states of the generalized gauge actions on our C* algebras and random walks on the groups.
MISC
6-
京都大学数理解析研究所講究録 1459 74--81 2005年
-
京都大学数理解析研究所講究録 1354 74--82 2004年
-
京都大学数理解析研究所講究録 1300 52--64 2003年
-
京都大学数理解析研究所講究録 1250 106--113 2002年
書籍等出版物
2所属学協会
1共同研究・競争的資金等の研究課題
7-
2017年4月 - 2024年3月
-
日本学術振興会 科学研究費助成事業 2013年4月 - 2017年3月
-
日本学術振興会 科学研究費助成事業 2010年4月 - 2015年3月
-
日本学術振興会 科学研究費助成事業 2009年 - 2012年
-
日本学術振興会 科学研究費助成事業 2008年 - 2010年