Osaka Kyoiku University Researcher Information
日本語 | English
Curriculum Vitaes
Profile Information
- Affiliation
- Professor, Division of Math, Sciences, and Information Technology in Education, Osaka Kyoiku University
- Degree
- 修士(農学)(東北大学)Ph. Doctor(Agriculture)(Tohoku University)博士(農学)(東北大学)
- Researcher number
- 10314444
- J-GLOBAL ID
- 200901081252736172
- researchmap Member ID
- 1000248485
- External link
Research Areas
2Research History
8-
Apr, 2020 - Mar, 2024
-
Apr, 2022
-
Apr, 2008 - Mar, 2016
-
Apr, 2014
-
Apr, 2007 - Mar, 2014
Education
2-
Apr, 1996 - Mar, 1999
Committee Memberships
1-
2007
Awards
3-
Aug, 2005
-
2001
Papers
91-
Scientific Reports, 14(1) 9656, Apr 26, 2024 Peer-reviewedAbstract Weedy rice is a major problem in paddy fields around the world. It is well known that weedy rice appears to grow faster and mature earlier than cultivated rice. It is possible that differences in the root microbial genetics are correlated with this characteristic. This study incorporated 16S rRNA amplicon sequencing to study the microbial composition in the rhizosphere and endosphere of rice root. No significant difference was found between the microbiota associated with weedy and cultivated rice lines grown in the same field. It was found that the endosphere had less microbial diversity compared to the rhizosphere. The major groups of bacteria found in the endosphere are from the phylum Proteobacteria, Myxococcota, Chloroflexota, and Actinobacteria. In addition, by analyzing the microbiome of japonica rice grown in the field in a temperate climate, we found that despite differences in genotype and location, some bacterial taxa were found to be common and these members of the putative rice core microbiome can also be detected by in situ hybridization. The delineation of a core microbiome in the endosphere of rice suggests that these bacterial taxa might be important in the life cycle of a wide range of rice types.
-
Plant Reproduction, Apr 26, 2023Abstract Key message S29 haplotype does not require the MLPK function for self-incompatibility in Brassica rapa. Abstract Self-incompatibility (SI) in Brassicaceae is regulated by the self-recognition mechanism, which is based on the S-haplotype-specific direct interaction of the pollen-derived ligand, SP11/SCR, and the stigma-side receptor, SRK. M locus protein kinase (MLPK) is known to be one of the positive effectors of the SI response. MLPK directly interacts with SRK, and is phosphorylated by SRK in Brassica rapa. In Brassicaceae, MLPK was demonstrated to be essential for SI in B. rapa and Brassica napus, whereas it is not essential for SI in Arabidopsis thaliana (with introduced SRK and SP11/SCR from related SI species). Little is known about what determines the need for MLPK in SI of Brassicaceae. In this study, we investigated the relationship between S-haplotype diversity and MLPK function by analyzing the SI phenotypes of different S haplotypes in a mlpk/mlpk mutant background. The results have clarified that in B. rapa, all the S haplotypes except the S29 we tested need the MLPK function, but the S29 haplotype does not require MLPK for the SI. Comparative analysis of MLPK-dependent and MLPK-independent S haplotype might provide new insight into the evolution of S-haplotype diversity and the molecular mechanism of SI in Brassicaceae.
-
Plants (Basel), 10 2467, Nov 15, 2021 Peer-reviewed
-
Genes and Genetic Systems, 96 129-139, Jun 18, 2021 Peer-reviewed
-
Nature Communications, 11(1) 4916, Oct 1, 2020 Peer-reviewed<title>Abstract</title> Self-incompatibility (SI) is a breeding system that promotes cross-fertilization. In <italic>Brassica</italic>, pollen rejection is induced by a haplotype-specific interaction between pistil determinant SRK (<italic>S</italic> receptor kinase) and pollen determinant SP11 (<italic>S</italic>-locus Protein 11, also named SCR) from the <italic>S</italic>-locus. Although the structure of the <italic>B. rapa S</italic>9-SRK ectodomain (eSRK) and <italic>S</italic>9-SP11 complex has been determined, it remains unclear how SRK discriminates self- and nonself-SP11. Here, we uncover the detailed mechanism of self/nonself-discrimination in <italic>Brassica</italic> SI by determining the <italic>S</italic>8-eSRK–<italic>S</italic>8-SP11 crystal structure and performing molecular dynamics (MD) simulations. Comprehensive binding analysis of eSRK and SP11 structures reveals that the binding free energies are most stable for cognate eSRK–SP11 combinations. Residue-based contribution analysis suggests that the modes of eSRK–SP11 interactions differ between intra- and inter-subgroup (a group of phylogenetically neighboring haplotypes) combinations. Our data establish a model of self/nonself-discrimination in <italic>Brassica</italic> SI.
Misc.
31-
大阪教育大学紀要. 総合教育科学, 72 431-438, Feb, 2024 Lead authorCorresponding author
-
大阪教育大学紀要. 総合教育科学, 72 423-430, Feb, 2024 Lead authorCorresponding author
-
Memoirs of Osaka Kyoiku University. Educational Science, 71 463-472, Feb 28, 2023 Lead authorCorresponding author
-
日本植物生理学会年会要旨集, 52nd 170-0236, Mar 11, 2011Many flowering plants have evolved self-incompatibility (SI) systems to prevent inbreeding. SI in Brassica is controlled by a large number of haplotypes at the S-locus. Each S-haplotype encodes the pollen-borne ligand S-locus protein 11 (SP11, also named S-locus cystein rich protein, SCR) and its stigmatic receptor S-receptor protein kinase (SRK). The SI phenotype of pollen is determined by the dominance relationships between the two S-haplotypes the plant carries. Based on these relationships, the S-haplotypes in Brassica have been classified into two groups; the pollen-dominant (class I) and the pollen-recessive (class II) S-haplotypes. Pollen-dominant S-haplotypes are generally codominant with each other, and they are always dominant over recessive S-haplotypes in S-heterozygotes. Previously we have shown that the expression of recessive SP11 allele is silenced as a result of tapetum-specific DNA methylation in its promoter region in the dominant/recessive S-heterozygotes. Here we show that this methylation is controlled by trans-acting small RNA encoded in the flanking region of dominant SP11 allele.
-
GENES & GENETIC SYSTEMS, 85(5) 297-310, Oct, 2010 Peer-reviewedIn the last decade, a variety of innovations of emerging technologies in science have been accomplished. Advanced research environment in plant science has made it possible to obtain whole genome sequence in plant species. But now we recognize this by itself is not sufficient to understand the overall biological significance. Since Gregor Mendel established a principle of genetics, known as Mendel's Laws of Inheritance, genetics plays a prominent role in life science, and this aspect is indispensable even in modern plant biology. In this review, we focus on achievements of genetics on plant sexual reproduction research in the last decade and discuss the role of genetics for the coming decade. It is our hope that this will shed light on the importance of genetics in plant biology and provide valuable information to plant biologists.
-
PLANT AND CELL PHYSIOLOGY, 50(11) 1857-1864, Nov, 2009 Peer-reviewedSexual reproduction is an important biological event not only for evolution but also for breeding in plants. It is a well known fact that Charles Darwin (18091882) was interested in the reproduction system of plants as part of his concept of species and evolution. His keen observation and speculation is timeless even in the current post-genome era. In the Darwin anniversary year of 2009, I have summarized recent molecular genetic studies of plant reproduction, focusing especially on male gametophyte development, pollination and fertilization. We are just beginning to understand the molecular mechanisms of the elaborate reproduction system in flowering plants, which have been a mystery for 100 years.
-
Floriculture Ornamental and Plant Biotechnology, 1 552-555, 2006
-
育種学研究, 2(2) 245, Sep, 2000
-
Plant Biotechnology, 16(4) 263-272, 1999 Peer-reviewedMany angiosperm plants express self- incompatibility (SI), through which they can recognize selfpollen and restrict fertilization to non-self-pollen. In species of Brassica, SI is sporophytically expressed, regulated by a single locus, S, with multiple alleles. Two stigma- specific genes, SLG and SRK, both of which locate at the S locus, are believed to play a role in the recognition reaction on the stigma side. Reviewed here are findings about SLG and SRK genes, the molecular characterization of Smultigene family, the genomic structure of S locus, and some aspects on signal transfer by the proteins encoded by these genes.
-
Recent Research Developments in Agricultural and Biological Chemistry., 1 235-242, 1997 Peer-reviewed
Books and Other Publications
6-
Springer-Verlag, 2008 (ISBN: 9783540684862)
Research Projects
25-
Grants-in-Aid for Scientific Research, Japan Society for the Promotion of Science, Apr, 2020 - Mar, 2023
-
Grants-in-Aid for Scientific Research, Japan Society for the Promotion of Science, Jun, 2016 - Mar, 2021
-
Grants-in-Aid for Scientific Research, Japan Society for the Promotion of Science, Apr, 2014 - Mar, 2017
-
Grants-in-Aid for Scientific Research, Japan Society for the Promotion of Science, Apr, 2013 - Mar, 2017
-
2013 - 2017